BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT: ENGINEERING AND PHYSICS

APR 2025

PROGRAMME: BSc Honours Degree in Electronics Engineering

TOTAL MARKS: 100

EEE2208: ELECTRONIC DRIVES AND POWER ELECTRONICS APPLICATIONS

DURATION: 3 hours

INSTRUCTIONS TO CANDIDATES

The paper contents 7 questions, answer any FIVE questions. Each carries 20 marks Only calculator is permitted	
Question 1 a) Why is it important to maintain a high power factor in electrical systems?	[4]
b) Explain the working principle of a diode.	[6]
c) What are the advantages of Schottky diodes in power electronics applications?	[10]
Question 2	
a) Describe the operation of a thyristor.	[10]
b) Explain industrial applications of thyristors.	[10]
Question 3	
a) Compare the advantages and disadvantages of MOSFETs and IGBTs in power switching.	[12]
b) Explain why MOSFETs are preferred for high-frequency applications.	[8]
Question 5	
a) Explain the types of Uninterruptible Power Supplies (UPS) systems.	[14]
b) Functional Block Diagram of switch-mode power (SMPS) supplies in UPS.	[6]
Question 6	
a) Describe the working principle of static VAR compensators.	[10]
b) Explain their role in reactive power management.	[6]

c) Explain the effects of harmonics on power system components.

[4]

Question 7

a) Describe the speed control of a shunt motor using rheostatic methods.

[10]

b) Calculate the speed if the back EMF is 220V, armature resistance is 0.5Ω , and armature current is 10A. [10]

END OF EXAM