# BINDURA UNIVERSITY OF SCIENCE EDUCATION

## CHEMISTRY DEPARTMENT



CH203: ORGANIC CHEMISTRY II

### 2 HOURS

ANSWER QUESTION ONE AND FOUR OTHERS, TWO FROM EACH OF THE SECTIONS A AND B. EACH QUESTION CARRIES 20 MARKS

- 1 Define the following terms as used in organic chemistry. (a)
  - Organometallic compound
  - (ii) Radical cation
  - (ii) Alpha carbon

[2 marks]

[2 marks] [2 marks]

Provide structures for compounds A and B in the following synthesis. (b)

[1; 2 marks]

(c) Propose a mechanism for the Dieckmann condensation below.

[8 marks]

How many different kinds of H atoms does CH3CH2CH2CH2CH3 contain? (d) [3 marks]

## SECTION A: ANSWER ANY TWO QUESTIONS

- 2 (a) With the aid of examples discuss the following synthesis:
  - Claisen condensation (i)

[5 marks]

(ii) Michael reaction [5 marks]

(iii) Self Aldol Reaction

[5 marks]

(b) Describe the ideal properties of a commercial organic product.

[5 marks]

Predict the starting materials required to prepare each of the compounds below by Diels alder reactions.



(ii) CH<sub>3</sub>

[8 marks]

(b) Using any reagents of your choice, show how you might accomplish the following transformation.



[10 marks]

(c) Predict the products of the synthesis below;

(ii) 
$$\begin{array}{c} \text{CO}_2\text{CH}_2\text{CH}_3 \\ \\ \text{CO}_2\text{CH}_2\text{CH}_3 \end{array} & \begin{array}{c} 1. \text{ NaOC}_2\text{H}_5 \\ \\ 2. \text{ CH}_3\text{CH}_2\text{OH} \end{array} \end{array}$$

[2 marks]

4 (a) Using reaction outlines describe the differences between crossed Aldol condensation and Robinson annulation.

[12 marks]

Vig

(b) Draw and label all of the acidic hydrogen atoms in the molecules below,



[2 marks]

(c) Apply a detailed retro-synthetic analysis to synthesize the compound below.



[6 marks]

#### **SECTION B: ANSWER ANY TWO QUESTIONS**

- Propose possible molecular formulas for a compound with a molecular ion at m/z = 86. [10 marks]
  - (b) How can two isomers having molecular formula  $C_2H_6O$  be distinguished by IR spectroscopy? [10 marks]
- 6 (a) Interpret the mass and IR spectrum of X shown below; [10 marks]





- (b) Calculate the HDI for a compound with molecular formula C<sub>4</sub>H<sub>8</sub>CINO<sub>2</sub>, and identify the structural information provided by the HDI. **[10 marks]**
- Using the IR, MS, NMR and UV data identify unknown B (figures attached).
   Clearly show steps leading to the structure.

  [20 marks]

### Unknown B



Table 13.2 Important Absorption Bands in the Infrared Spectral Region

| Position<br>(cm <sup>-1</sup> ) | Group        | Comments                                                                                                                                  |
|---------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 3550-3200                       | -О-Н         | Strong intensity, very broad band                                                                                                         |
| 3400-3250                       | -N-H         | Weaker intensity and less broad than O—H; NH <sub>2</sub> shows two bands, NH shows one                                                   |
| 3300                            | ==C H        | Sharp, C is sp hybridized                                                                                                                 |
| 3100-3000                       | =C $-$ H     | C is sp <sup>2</sup> hybridized                                                                                                           |
| 3000-2850                       | $-\dot{c}-H$ | C is sp <sup>3</sup> hybridized; 3000 cm <sup>-1</sup> is a convenient dividing line between this type of C—H bond and the preceding type |
| 2830-2700                       | О<br>        | Two bands                                                                                                                                 |
| 2260-2200                       | -C = N       | Medium intensity                                                                                                                          |
| 2150-2100                       |              | Weak intensity                                                                                                                            |
| 1820-1650                       | O<br>-C-     | Strong intensity, exact position depends on substituents see Table 13.1                                                                   |
| 1660-1640                       | C            | Often weak intensity                                                                                                                      |
| 1600-1450                       |              | Four bands of variable intensity                                                                                                          |
| 1550 and 1380                   | $-NO_2$      | Two strong intensity bands                                                                                                                |
| 1300-1000                       | -c-o-        | Strong intensity                                                                                                                          |
| 900-675                         |              | Strong intensity                                                                                                                          |

Table 14.1 Approximate Chemical Shifts of Hydrogens in H-NMR Spectra

| Type of<br>Hydrogen                 | Chemical<br>Shift (δ) | Type of<br>Hydrogen | Chemical<br>Shift (δ) |
|-------------------------------------|-----------------------|---------------------|-----------------------|
| $-C$ - $CH_3$                       | 0.9                   | CI-CH <sub>3</sub>  | 3.0                   |
| $C-C-CH_3$                          | 1.6                   | O-CH <sub>3</sub>   | 3.3                   |
| C = C - H                           | 1.8                   | 0                   |                       |
| N-H                                 | 1-3                   | C-O-CH <sub>3</sub> | 2.7                   |
| О-Н                                 | 2-5                   | C O City            | 3.7                   |
| 0                                   |                       | $O_2N-CH_3$         | 4.1                   |
| R-O-C-CH <sub>3</sub>               | 2.0                   | F-CH <sub>3</sub>   | 4.2<br>5.5-6.5        |
| C-CH <sub>3</sub> N-CH <sub>3</sub> | 2.2                   | H                   | 7-8                   |
| $I-CH_3$                            | 2.2                   |                     |                       |
| $N = C - CH_3$                      | 2.2                   | O                   |                       |
| Ph-CH <sub>3</sub>                  | 2.3                   | Č—H                 | 10                    |
| Br—CH <sub>3</sub>                  | 2.7                   | O                   |                       |
|                                     |                       | С-О-Н               | 12                    |

Note that these positions are only approximate. Furthermore, most of these positions are given for CH $_{\rm J}$  groups. CH $_{\rm J}$  groups appear farther downfield by about 0.3 ppm and CH groups by about 0.7 ppm.

Table 14.2 Approximate Chemical Shifts of Carbons in <sup>13</sup>C-NMR Spectra

| T                            | ype of Carbon            | Chemical Shift ( $\delta$ ) |
|------------------------------|--------------------------|-----------------------------|
| I° Alkyl, RCH <sub>3</sub>   |                          | 0-40                        |
| 2° Alkyl, RCH <sub>2</sub> R |                          | 10-50                       |
| 3° Alkyl. RCHR <sub>2</sub>  |                          | 15-50                       |
| Alkyl halide or amine. —     | -C-X (X = Cl, Br, or N-) | 10–65                       |
| Alcohol or ether. —C-        | O                        | 50-90                       |
| Alkyne, −C≡                  |                          | 60-90                       |
| Alkene, C=                   |                          | 100-170                     |
| Aryl,                        |                          | 100-170                     |
| Nitriles, —C=N               |                          | 120-130                     |
| Amides, —C—N—                |                          | 150-180                     |
| Carboxylic acids, esters.    | -C-O                     | 160-185                     |
| Aldehydes, ketones, —        | O<br> <br>               | 180-215                     |

## End of exam