BINDURA UNIVERSITY OF SCIENCE EDUCATION ## MT009: PURE MATHEMATICS 3 Time: 3 hours Answer ALL questions in Section A and at most TWO questions in section B. ## SECTION A (40 marks) Candidates may attempt ALL questions being careful to number them A1 to A4. - A1. (a) Find the general solution of the differential equation $\frac{dy}{dx} = (1-y)^2$ expressing y in terms of x. [5] - (b) The complex number z satisfies the equation |z| = |z + 2|. Show that the real part of z is -1 - **A2.** Find the general solution of the differential equation $\frac{dy}{dx} + 3x(y^2 + 4) = 0$ expressing y in terms of x. - A3. (a) Use the trapezium rule to estimate the area under the curve $y = \frac{1}{x}$ from x = 1 to x = 2. - (b) Use the Simpson's rule to find an approximation for the area under the curve $y = \frac{1}{x}$ between x = 1 and x = 2. [8] - **A4.** The lines L_1 and L_2 have equations r = (3,1,0) + t(1,2,4) and r = (1,-1,1) + s(2,1,-1) respectively, where t and s are parameters. - (a) Show that L_1 passes through the point (2,-1,-4) but L_2 does not pass through this point. [4] - (b) Find the acute angle between L_2 and the line joining the points (1, -1, 1) and (2, -1, -4) giving your answer correct to the nearest degree. [5] ## SECTION B (60 marks) Candidates may attempt TWO questions being careful to number them B5 to B7. (a) A curve has an equation $y=(4-x^2)^{-\frac{1}{2}}$ for $-1 \le x \le 1$. The region R is enclosed by $y = (4 - x^2)^{-\frac{1}{2}}$, the x-axis and the line x = -1 and x = 1. (i) Find the exact value of the area R. 5 (ii) Find the exact value of the volume generated when R is rotated through four right angles about the x-axis. (iii) Show that the volume generated when R is rotated through two right angles about the y-axis is $\pi(4-2\sqrt{3})$. 6 (b) A curve is given by $y^3 + y^2 + y = x^2 - 2x$. (i) Show that the point (3,1) is the only point of intersection of the line x=3and the curve. (ii) show that the tangent to curve at the point (-1,1) has equation 2x+3y-1=[4](iii) Show that at the origin, $\frac{dy}{dx} = -2$ and $\frac{d^2y}{dx^2} = -6$, and give Maclaurin's series for y as far as the term in x^2 . (a) The equation of the line L is r = (1, 3, 7) + t(2, -1, 5). The points A and B have position vectors (9,3,26) and $(13,9,\alpha)$ respectively. The line L intersects the line through A and B. (i) Find α and the acute angle between line L and AB. [8] (ii) The point C has position vector (2,5,1) and the foot of the perpendicular from C to L is Q. Find the length of CQ. [7](b) A curve is given by the parametric equations $x=t^2,\,y=t^3.$ (i) Prove that the equation of the tangent at the point with parameter t is $2y - 3tx = t^3 = 0$. (ii) This tangent passes through a fixed point (X, Y). Give a brief argument to show that there cannot be more than 3 tangents passing through (X, Y). [3] (iii) The tangent at the point where t=2 meets the curve again at the point where t = u. Find the value of u. **B7.** (a) A curve is given by $y = x^5 - 10x$. (i) Find the coordinates of the turning points on the graph of $y = x^5 - 10x$. (ii) Show with the aid of a sketch, that the equation $x^5 - 10x = 5$ has three real (iii) State the two consecutive integers between which the positive root of the equation $x^5 - 10x = 5$ lie. (iv) Carry out one linear interpolation, starting with these two integers, to obtain an estimate of the positive root. Explain, with reference to a sketch, why this linear interpolation gives an underestimate of the root. (v) Use the Newton-Raphson method to find the value of the positive root correct to 1 decimal place. [5](b) Given the equation $y = \frac{4x}{(x-1)^2}$. B5. - (i) State the equations of the asymptotes of the curve, and use differentiation to find the coordinates of the turning point on the curve. [5] - (ii) Sketch on separate diagrams the graphs of $y = \frac{4x}{(x-1)^2}$ and $y^2 = \frac{4x}{(x-1)^2}$. [5] END OF QUESTION PAPER