Bindura University of Science Education

Faculty of Science Education

Department of Science and Mathematics Education

Programmes: HBSc Ed (Mathematics)

Duration: Three hours Course: MT207: Analysis

Semester Examinations

Instructions to candidates

- Answer all questions in Section A and two questions from Section B. (i)
- Begin each question on a fresh page. (ii)

Section A [40 marks]

Answer all questions from this section being careful to number them A1 to A5.

- A1. (a). Define the terms:
 - (i), infimum of a set $S \subseteq \mathbb{R}$

[2]

(ii), an ordered field.

[4]

- (b). Find the least upper bound and greatest lower bound for the sets:
- $(i). A = \left\{ \frac{4+x}{x} \mid x \ge 1 \right\},$

[4]

(ii) $B = \{x | x^2 - x < 6\}.$

[3]

A2. Prove that there exists a real number x such that $x^2 = 2$.

[8]

- **A3.** A sequence (u_n) has its n-th term given by $(u_n) = \frac{2n-3}{4n+7}$. Prove that (u_n)

converges.

[7]

A4. (a) Define a Cauchy sequence.

[3]

(b). Prove that the sequence $(x_n) = \frac{1}{n}$ is a Cauchy sequence.

4

A5. Prove that if $\frac{m}{n}$ and $\frac{p}{q}$ are rational numbers with $p \neq 0$, then $\frac{m}{n} + \sqrt{2} \frac{p}{q}$ is an irrational

number

[5]

Section B:[60 marks]

Answer two questions from this section being careful to number them B6 to B8.

B6. (a). Prove that a sequence (a_n) converges to a real number L iff for every $\varepsilon > 0$, all but a finite number

of the terms of (a_n) lie in the interval $(L - \varepsilon, L + \varepsilon)$. [12]

(b). Prove that if $a, b \in \mathbb{R}$, with a > 0, then there is a positive integer n such that na > b. [10]

(c). Prove that $f(x) = x^2 + 2x - 5$ is uniformly continuous on [0,2]. [8]

B7. (a). Define a cut in \mathbb{R} .

(b). Prove that if an ordered paired (A, B) of non-empty subsets of \mathbb{R} form a cut in \mathbb{R} ,

then there is a unique element ε that satisfies: $a \le \varepsilon$, $\forall a \in A$ and $\varepsilon \le \forall b \in B$. [12]

(c). State and prove the nested cells property in \mathbb{R} . [15]

B8. (a). Let f be a function defined on [a, b] and suppose f(x) is differentiable

at $x_o \in (a, b)$. Prove that f is continuous. [10]

(b). Define the following terms:

(i). a partition P of an interval [a, b], [3]

(ii). a lower and upper Riemann sums of a function f with respect to the partition P [4]

(iii), a refinement Q of P.

(c). State Riemann condition for an integrability of a function f. [4]

(d). Use the definition of the Riemann integral to evaluate $\int_0^1 x^3 dx$. [7]

Page 2 of 2

END OF PAPER