

FACULTY OF SCIENCE EDUCATION DEPARTMENT OF ENGINEERINGAND PHYSICS

Bachelor of Science Honours Degree in Electronic Engineering
EEE3205 - Control Engineering

Time Allowed: 3 Hours

Total Marks: 100

Special Requirements: Scientific Calculator, rule, pen, pencil

INSTRUCTIONS

1. Answer any FIVE (5) questions

2. The question paper contains SEVEN (7) questions

3. Each question carries 20 marks

- 1(a) With the aid of a block diagram compare and contrast open loop to closed loop control Systems [15]
- (b) What are the advantages and disadvantage open loop control system. [5]
- **2(a)** A simple series voltage regulator closed loop control system is shown below. Discuss how it maintains the out voltage constant. [10]
- (b) With the aid of a well-labelled block diagram design an Insulin delivery control system. The system must provide the insulin from a reservoir implanted within the diabetic person. The goal is to design a system to regulate the blood sugar concentration of a diabetic by controlled dispensing of insulin. The variable to be controlled is blood glucose concentration. The design specification is to provide a blood glucose level for the diabetic that closely approximates the glucose level of a healthy person. [10]
- 3(a)(i) What is the significance of standard test signals in control systems. [2] (ii) With the aid of mathematical equations or waveform diagram, define step input
 - test signal.
- (b) Sketch then polar for the control system having the transfer function. [15]

$$G(s) = \frac{1}{(1+0.1s)}$$

4(a) Find the transfer function of the system shown in Figure below using Mason's gain formula. [8]

(b) Determine the ratio $\frac{C(s)}{R(s)}$ of the block diagram shown below. [2]

(c) With the aid of a signal flow diagram, write the rule for three blocks in parallel.[2]

- (d)Prove the above rule mathematically. [3]
- (e) Determine the poles and zeros of the closed-loop system. [5]

$$G_1(s)=\frac{0.1s+1}{s}, \quad G_2(s)=\frac{s+1}{s^2+2s+4}$$
 5(a) Determine the characteristic equation of the following systems. [2]

$$G(s) = \frac{12}{s(s^2+4s+2)}$$
 and $H(s) = 0.5$

- (b) State Routh Stability Criterion. [2]
- (c) Examine the stability of $s^5 + 6s^4 + 3s^3 + 2s^2 + s + 1 = 0$ using Routh Stability Criterion. [8]
- (d) Find the Laplace transform of standard test signals below. [2]
 Unit step signal
 Unit ramp signal [3]
- (e) Find the error coefficients of a system having $G(s)H(s) = \frac{(s+3)}{s(l+0.60s)(l+0.35s)}$ [3]
- **6(a)** Calculate the frequency response of the following system over a frequency range of 0.01 to 10 rad/s.

$$G(s) = \frac{5 (s+1)}{(s+2)(s+3)}$$
 [20]

- **7(a)** If the transfer function of a system and applied input to it are e^{-3t} and e^{-4t} , find the response of the system.
 - (b) What are static error constants with reference to Time Domain response? [3]

 K_P - positional error constant

 K_a -acceleration error constant

 K_v - velocity error constant

(c) A unity feedback system has an open loop transfer function of $G(s) = \frac{10}{(s+1)(s+2)}$ Determine steady state error for unit step signal input. [4]

- (d) Evaluate the significance of the following frequency response specifications. [4]
 - (i) Bandwidth
 - (ii) Resonant peak
- (e) Briefly describe two scenarios when compensation can be required in closed loop control system. [2]
- (ii) Identify the type of compensator below.

[2] [1]

(iii) Describe the effect of adding the compensator in the forward path as shown.[3]

The End