BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE EDUCATION

Diploma in Science Education

Part 2.1

DM004/MT004: Mechanics

Duration 3 hours

Semester Examinations

INSTRUCTIONS

Answer all questions in Section A and any two questions from Section B

Section A: (40 marks)

- A1 (a) A particle with a mass of 2kg has position vector given by $\vec{r} = 3t^2 \, i 2t \, j 3t \, k$, where \vec{r} is in metres and t is in seconds. For t = 2s, determine the magnitude of the force acting on the particle.
- (b). A particle of mass 5kg slides down a smooth plane inclined at 30° to the horizontal. Find the acceleration of the particle and show that the reaction between the particle and

the plane is
$$R = \frac{5g\sqrt{3}}{2}N$$
. [5]

- A2. (a) A car travelling at $30ms^{-1}$ is uniformly retarded to $10ms^{-1}$ in a distance of 60m. Find the time taken. Find also the further distance it will travel in coming to rest if the retardation remains the same.
- (b) A car of mass 1500kg accelerates from $10ms^{-1}$ to $20ms^{-1}$ in 3s. Find the tractive force assuming that it is constant. [3]
- A3. (a) Find in the form ai + bj, a force of magnitude $8\sqrt{2}N$ acting along the line 3i j + t(i j). [4]
- (b). Find in the form xi + yj:
 - (i) a force of 50N parallel to the vector 24i-7j. [3]
 - (ii) a force of 13N acting along the line of action from A(1, -3) to B(13, 2). [3]

A4. (a) Four forces are represented by the vectors: 3i - j, i + 7j, 5j, and i + j, determine the magnitude and direction of their resultant. [5]

Page 1 of 3

(b) Find in the form ai + bj, a force of magnitude $8\sqrt{2}N$ acting along the line 3i - j + t(i - j). [5]

Section B [60 marks]

Answer two questions from this section being careful to number them B5 to B7.

- **B5.** (a). A particle starts moving from rest and moves in a straight line. Its acceleration a ms^{-2} is given by a = 3 for $0 \le t \le 2$ and a = -3 for $0 \le t \le 3$ where t is in seconds.
- (i). Find the velocities of the particle when t = 2 and when t = 6. [4]
- (ii). Hence, sketch the (t,v) graph and find the total distance travelled by the particle in the interval [4]
- (b) A particle of mass 0.5kg moves so that its position vector after t seconds is given by $r = (3t^2 2t^3)i 2tj$. Determine the:
- (i) velocity,
- (ii) acceleration,
- (iii) linear momentum of the particle when t = 2s. [2, 3, 3]
- (c). (i) A particle is moving in a straight line with constant acceleration of $-4ms^{-2}$. If the initial velocity of the particle is $10ms^{-1}$, find its displacement after 2s. [5]
- (ii) The force acting in a straight line on a particle of mass m is of magnitude km/(v+1) where k is a constant and v is the speed of the particle when it has travelled a distance x. Find the distance moved when its speed increases from 0 to u.
- **B6.** (a) A ball is projected at an angle of 30° above the horizontal with a velocity of $36ms^{-1}$ from a point which is 1.5m above the ground. Calculate the magnitude of the velocity with which the ball hits the ground.
- (b) A particle moves in the x y plane and at time t is at the point $(3t^2 + 2, t t^2)$. Prove that the particle has constant acceleration and find it.

- (c). A body of mass 5.2kg is held in equilibrium on a rough plane, by a force, \vec{F} acting up the line of greatest slope. The plane is inclined at an angle θ to the horizontal where $\cos\theta = \frac{4}{5}$. When $\vec{F} = 19.2N$ the body is about to slide down the plane. Show that the coefficient of friction between the body and the plane $\mu = \frac{15}{52}$. [Use = $10ms^{-2}$]
- (d) (i) A particle with an initial velocity of $v_o m/s$ starts moving in a straight line with constant acceleration a. Show that the displacement of the particle, s, after some time, t, is given by;

$$s = v_0 t + \frac{1}{2} a t^2. ag{5}$$

- (iii) A force of 8N and a force P have a resultant of magnitude of 17N. Determine P if the angle between the two forces is 60° .
- **B7**. (a) A particle is projected from a point θ on a horizontal plane with speed $40ms^{-1}$ at an angle θ to the horizontal, where $tan\theta = \frac{4}{3}$. Find;
 - (i) the time taken for the particle to return to the plane, [5]
 - (ii) the range of the particle, [5]
 - (iii) the speed after 2s. [5]
- (b) PQRS is a square. Determine the resultant of the following forces: 5N acting along PQ, $3\sqrt{2}N$ along PR, 3N along PS. [10]
- (c) A particle starting from rest moves with constant angular acceleration of $\frac{\pi}{4} \ rads^{-2}$. Find the angle it turns through in the third second of its motion. [5]

END OF PAPER