BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCES AND ENGINEERING

DEPARTMENT OF ENGINEERING AND PHYSICS

ELECTRONIC ENGINEERING DEVICES AND CIRCUITS ANALYSIS

EEE1203

Examination Paper

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: Calculator, Graph Paper

Examiner's Name: S. Komichi

INSTRUCTIONS

- 1. Answer any FOUR questions only.
- 2. Each question carries 25 marks.
- 3. Show your steps clearly in any calculation.
- 4. Start the answers for each question on a fresh page.

MARK ALLOCATION

QUESTION	MARKS ,
1.	25
2.	25
3.	25
4.	25
5.	25
6.	25
7.	25
TOTAL	100

Page 1 of 8

Determine the dc resistance levels for the diode of Figure 1.1 below at

- (a) $I_D = 2 \text{ mA}$
- (b) $I_D = 20 \text{ mA}$
- (c) $V_D=10 V$

[4], [4], [4]

Figure 1.1 Diode Characteristics

(d) (i) Design the voltage divider of Figure 1.2 below such that V_{R1} = $4V_{R2}$

Figure 1.2: Voltage Divider

[5]

Figure 1.3: Resistor Network

(d) (ii) Calculate total resistances for circuit in Figure 1.3 above; also calculate branch resistances for the circuit. [2], [3], [3]

Question 2

- a) For the series diode configuration of Figure 2.1 employing the diode characteristics of Figure 2.2 determine:
 - (i) V_{DQ} and I_{DQ} .
 - (II) V_R.

[3], [3], [4].

Figure 2.1: Series Diode and Characteristics

b) Determine Vo and I_D for the series circuit of Figure 2.2 below.

Figure 2.2: Diodes Network

[3], [3]

c) For the circuit below Figure 1.4 determine V₂, Current I, resistors R₁ and R₃ using KVL.

Figure 2.3: Resistor Network

[4], [4]

Question 3

- a) The emf of a battery is 22.5V. How much charge flows if energy transferred is 90J? What is the current it the transfer time is 1.5 minutes? [6]
- b) Determine the resistance of a 30m copper wire with a diameter of 0.032cm and resistivity of 1.723 x 10-8. [6]
- c) What is the pd across a lamp that dissipates 1000J in 10 seconds if current is 0.4A?
- d) Draw the common collector transistor configuration circuit clearly showing the current directions. [7]

a) Find the indicated currents and voltages for the network of Figure 4.1 below. Also find current in each branch (I_1 , I_2 , I_3 , I_4 and I_5) that is current through each resistor as well as V_1 and V_5 . [3], [3], [3], [3]

Figure 4.1: Resistor Networks

1 1 2 3 °

b) Determine the voltage Vo for the network of Figure 4.2 below.

[5]

Figure 4.2: Diode Network

3.2 kQ

Calculate the total current through the $4k\Omega$ resistor and the currents through the Si and the Ge diodes for the circuit in Figure 1.6. [2], [2], [1]

a) Given the load line of Figure 5.1 and the defined Q-point, determine the required values of V_{CC} , R_C , and R_B for a fixed-bias configuration. [4], [4], [5]

Figure 5.1: Load Line Analysis

- b) For the emitter bias network of Figure 5.2 below, determine:
- (i) I_B.
- (ii) Ic.
- (iii) V_{CE}.
- (iv) Vc.
- (v) V_E .
- (vi) V_B.

[2], [2], [2], [2], [2], [2]

Figure 5.2: Emitter Stabilized Circuit

a)

Figure 6.1: Resistor Network

a) Find the magnitude and direction of the currents in Figure 6.1 I_3 , I_4 , I_6 and I_7 above.

[8] [4]

- b) Give two differences between the Rectifier diodes and Zener diodes.
- c) (i) For the network of Figure 6.2 below, determine the range of R_L and I_L that will result in V_{RL} being maintained at 10 V.
 - (ii) Determine the maximum and minimum wattage rating of the diode in Figure 6.2 below. [3], [3], [4]

Figure 6.2: Zener Regulator

a) Determine the quiescent levels of I_{CQ} and V_{CEQ} for the network of Figure 7.1 below [13]

Figure 7.1: Bias Network

Question 7

b) Determine the dc bias voltage V_{CE} and the current I_C for the voltage-divider configuration of Figure 7.2 below. [12]

Figure 7.2: Voltage Divider Circuit