BINDURA UNIVERSITY OF SCIENCE EDUCATION

DIPLOMA IN SCIENCE EDUCATION

MT006: Statistics 11/

DM006: Inferential statistics

Time: 2 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 mark)

Candidates may attempt ALL questions being careful to number them A1 to A5.

A1. Define the terms

(a) Independent variable	[2]	
(b) Dependent variable	[2]	
(c) Parameter	[2]	
(d) Statistics	[2]	
(e) Statistic	[2]	
A2. Draw a sketch diagram for each of the following, indicating the position of the mean, mode and median;		
(a) normal distribution	[3]	
(b) positively skewed-distribution	[3]	
(c) negatively skewed distribution	[3]	

- **A3.** The birth weight of babies is normally distributed with mean 3500g and standard deviation 500g. What is the probability that a baby is born that weighs less than 3100g? [10]
- A4. A radioactive source emits particles at an average rate of 25 particles per second. What is the probability that in 1 second the count is less than 27 particles? [10]
 A5. Differentiate descriptive statistics from inferential statistics [1]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B6 to B8

B6.

- a) The marks of 500 candidates in an examination are normally distributed with a mean of 45 marks and a standard deviation of 20 marks. If 5 % of candidates obtain a distinction by scoring x marks or more, estimate the value of x. [10]
- b) According to a particular genetic theory the number of color strains, pink, white and blue in a certain flower should appear in the ratio 3:2:5. In 100 randomly selected plants, the corresponding numbers for each were 24, 14 and 62. Test at 1% level that whether the differences between observed and expected frequencies are significant.
- c) Mercury makes a 2.4 liter V-6 engine, used in speedboats. The company's engineers believe the engine delivers an average horsepower of 220 HP and that the standard deviation of power delivered is 15 HP. A potential buyer intends to sample 100 engines. What is the probability that the sample mean will be less than 217 HP? [10]

B7.

- a) In recent years, convertible sports coupes have become very popular in Japan. Toyota is currently shipping Celicas to Los Angeles, where a customizer does a roof lift and ships them back to Japan. Suppose that 25% of all Japanese in a given income and lifestyle category are interested in buying Celica convertibles. A random sample of 100 Japanese consumers in the category of interest is to be selected. What is the probability that at least 20% of those in the sample will express an interest in a Celica convertible?
- b) A sample of 11 pints has a mean calorie content per 100 ml of 35.9, with a standard deviation of 2.35. Determine a 95% confidence interval for the true mean calorie content per 100 ml Guiness if the calorie content is normal. [10]
- c) A random sample of 100 people shows that 25 are left-handed. Form a 95% confidence interval for the true proportion of left-handers. [10]

B8.

- a) A manufacturer of light bulbs claims that the mean lifetime of the bulbs is 500 hours. In a simple random sample of 40 light bulbs, the mean lifetime is 483.75 hours and the standard deviation is 26.35 hours.
 - (i) Is there any evidence that the mean lifetime is different from 500 hours at 0.10 significance level? [10]
 - (ii) Which graphical display would be the best to present the data? [2]

(iii)	Considering the results of the hypothesis test, decide which of the Ty	
	Type II errors is possible, and describe this error.	[3]
(iv)	Decide whether H ₀ would have been rejected or would not have been	rejected
	with each of the following significance levels: $\alpha = 0.01$, $\alpha = 0.05$	[6]
(v)	What would the presence of one or more outliers in the data suggest a	ibout
. /	using the <i>t</i> statistic?	[3]
(vi)	Explain three factors that affect the power of a test.	[6]
(vii)	State two estimation methods.	[2]

END OF PAPER