BINDURA UNIVERSITY OF SCIENCE EDUCATION CHEMISTRY DEPARTMENT

AUG 2024

COURSE: CH105 GENERAL CHEMISTRY

PROGRAMME: BACHELOR OF SCIENCE EDUCATION HONOURS PART I

2 Hours Time ANSWER QUESTION 1 AND FOUR OTHERS, TWO FROM EACH OF SECTIONS A AND B. EACH QUESTION CARRIES 20 MARKS

- What do you understand by the following 1. (a)
 - Strong acid (i)
 - Equivalence point (ii)
 - Lewis acid (iii)
 - End point (iv)
 - Black body (v)

[10 marks]

- Draw the shapes of s and p-orbitals. [4 marks] (b) (i)
 - State the difference between the 1s and 2s orbitals. (ii)

[2 marks]

- (c) Calculate the pH of:
 - 0.2M ethanoic acid, CH₃COOH. [K_a=1.78x10⁻⁵mol.dm⁻³] (i)
 - 0.1M NaOH. (ii)

[4 marks]

SECTION B: ANSWER ANY TWO QUESTIONS FROM THIS SECTION

- Give a schematic representation of the energy changes that 2. (a) $Na(s) + Cl(g) \rightarrow NaCl(s)$. [6 marks] accompany the process:
 - Write the Lewis formula for (b)
 - the carbonate ion, CO_3^{2-} . (i)

[2 marks]

phosphorus trifluoride, PF₃, a covalent compound. (ii)

[2 marks]

Each halogen can form single covalent bonds with other (c) halogens, to form interhalogen compounds; some examples are ClF and BrF. Given that the electronegativity of F, Cl, Br and I are 4.0, 3.0, 2.8 and 2.5 respectively, rank the following single bonds from least polar to most polar: F-Cl, F-Br, Cl-Br, and Cl-I [4 marks]

- (d) The pK_a of hydrocyanic acid (HCN) is 9.31. Find the concentration of H_3O^+ ions in an aqueous solution of concentration $2.0 \times 10^{-2} \, \text{moldm}^{-3}$. [3 marks]
- (e) HCOOH has a pK_a of 3.75. What is the pH of an aqueous solution of concentration 5×10^{-3} M? [3 marks]
- 3. (a) A 0.1014-g sample of purified glucose was burned in a C-H combustion train to produce 0.1486 g of CO₂ and 0.0609 g of H₂O. An elemental analysis showed that glucose contains only carbon, hydrogen, and oxygen. Determine the masses of C, H, and O in the sample and the percentages of these elements in glucose.

(i) Determine the mass of each element in the sample

[6 marks]

(ii) Calculate the percentage of each element.

[6 marks]

- (b) What mass of sodium chlorate, NaClO₃, would contain 33.0 grams of oxygen? [4 marks]
- (c) Explain, giving reason for the trend in first ionization energy down a group [4 marks]
- 4. (a) Define the following terms as used in analytical measurements and briefly describe how each of them arises.

(i) Systemic error

[6 marks]

(ii) Random error

[6 marks]

(b) Differentiate between accuracy and precision.

[4 marks]

(c) Find the mean and standard deviation for 821, 783, 834, and 855. [4 marks]

SECTION B: ANSWER ANY TWO QUESTIONS FROM THIS SECTION.

- 5. (a) A 30.0 mL sample of 0.20 M hydrochloric acid (HCl) is titrated with 0.20 M NaOH solution. Calculate the pH after the following volumes of base has been added:
 - (i) 0 ml
 - (ii) 15 Ml
 - (iii) 25 Ml
 - (iv) 30.0 mL

[14 marks]

- (b) Calculate the K_a and pK_a of 0.100 M methanoic acid, HCOOH, which has a pH of 4. [5 marks]
- (c) Calculate the pH of 0.01M HCl.

[1 marks]

- 6. (a) Use the Valence Bond Theory to explain shapes and bonding in SF₆, H₂O, NH₃ and PCl₅. [8 marks]
 - (b) Aspirin ($C_9H_8O_4$) is produced from salicylic acid ($C_7H_6O_3$) and acetic anhydride ($C_4H_6O_3$):

$$C_7H_6O_3 + C_4H_6O_3 \longrightarrow C_9H_8O_4 + HC_2H_3O_2$$

- (i) How much salicylic acid is required to produce 1.5×10^2 kg of aspirin? [3 marks]
- (ii) How much salicylic acid would be required if only 80% of the salicylic acid is converted to aspirin? [3 marks]
- (iii) What is the theoretical yield of aspirin if 185 kg of salicylic acid is allowed to react with 125 kg of acetic anhydride? [3 marks]
- (iv) If the situation described in part (iii) produces 182 kg of aspirin, what is the percentage yield? [3 marks]
- 7. (a) State Pauli's exclusion principle. [2 marks]
 - (b) Discuss the steps involved in the construction of sp, sp² and sp³, hybrid orbitals. [6 marks]
 - (c) What is the significance of electron spin for electronic configurations? [4 marks]
 - (d) State and explain the configurations of Cu and Cr. [4 marks]
 - (e) Suggest why Zn is not considered as a transition metal. [4 marks]

END OF PAPER