BINDURA UNIVERSITY OF SCIENCE EDUCATION

CHEMISTRY DEPARTMENT

HBSc.Ed and CHEMICAL TECHNOLOGY

NOLOGY MAR 2023

COURSE: CH 301: PHYSICAL CHEMISTRY III

2 HOURS

Answer ANY FIVE (5) questions. Each question carries 20 marks.

- 1. (a) Which of the following species would mostly likely be oxidized, if placed in a electrochemical cell with another species? Explain [4 marks]
 - i. Zn(s)
- ii. $Zn^{2+}(aq)$
- iii. Cu(s)
- iv. Hg(l)
- (b) The reaction below takes place in an electrochemical cell:

$$Mg(s) + Ca^{2+}(aq) \rightarrow Mg^{2+}(aq) + Ca(s)$$

Is the cell galvanic or voltaic? Explain

[4 marks]

- (c) Suppose that an enzyme mixture contains an enzyme with a Michaelis constant of $5.0 \times 10^{-6} M$. If the substrate concentration in this mixture is $4.5 \times 10^{-6} M$, what is the fractional saturation of this enzyme mixture? [5 marks]
- (d) What is geometry optimisation?

[2 marks]

- (e) What is the difference between molecular mechanics methods and density functional theory [5 marks]
- 2. (a) For a given enzyme catalyzed reaction, the Michaelis constant is 0.6 mM and the substrate concentration is 1.0 mM. What is the fractional saturation of the enzyme under these conditions? [5 marks]
 - (b) Rate constants for the first-order decomposition of acetone dicarboxylic acid $CO(CH_2COOH)_2(aq) \rightarrow CO(CH_3)_2(aq) + 2 CO_2(g)$ are $k = 4.75 \times 10^{-4} \text{ s}^{-1}$ at 293 K and $k = 1.63 \times 10^{-3} \text{ s}^{-1}$ at 303 K. What is the activation energy, E_a , for this reaction? [5 marks]

- (c) Following are two statements pertaining to the reaction $2A + B \rightarrow 2C$, for which the rate law is rate = k[A][B]. Identify which statement is true and which is false, and explain your reasoning.
 - (i) The value of k is *independent* of the initial concentrations [A]₀ and [B]₀.
 - (ii) The unit of the rate constant for this reaction can be expressed either as s^{-1} or min^{-1} . [5 marks]
- (d) The smog constituent, peroxy acetyl nitrate (PAN) dissociates into peroxy acetyl radicals and $NO_2(g)$ in a first order reaction with a half-life of 32 min.

If the initial concentration of PAN in an air sample is 2.7×10¹⁵ molecules/L, what will be the concentration 2.24 h later? [5 marks]

3. Hydroxide ion is involved in the mechanism but not consumed in this reaction in aqueous solution.

$$OCl^{-}(aq) + I^{-}(aq) \rightarrow OH^{-}OI^{-}(aq) + Cl^{-}(aq)$$

(a) Using the data in the table below, determine the order of reaction with respect to

OCl⁻, I⁻, and OH⁻, and the overall order. [6 marks]

[OCl ⁻] (M)	[I ⁻] (M)	[OH-] (M)	Rate of formation of OI ⁻ (molL ⁻¹ s ⁻¹)
0.0040	0.0020	1.00	4.8×10 ⁻⁴
0.0020	0.0040	1.00	5.0×10 ⁻⁴
0.0020	0.0020	1.00	2.4×10 ⁻⁴
0.0020	0.0020	0.50	4.6×10 ⁻⁴
0.0020	0.0020	0.25	9.4×10 ⁻⁴

- (b) Write the rate law, and determine the value of the rate constant, k. [4 marks]
- (c) Show that the following mechanism is consistent with the net equation and with the rate law. Which is the rate–determining step?

$$OCl^{-}(aq) + H_2O(l) \rightarrow \leftarrow HOCl(aq) + OH^{-}(aq)$$

$$I^{-}(aq) + HOCl(aq) \rightarrow HOI(aq) + Cl^{-}(aq)$$

$$HOI(aq) + OH^{-}(aq) \rightarrow H_2O(l) + OI^{-}(aq)$$
[6 marks]

(d) Is it appropriate to refer to OH⁻as a catalyst in this reaction? Explain.

[4 marks]

- 4. (a) Why do deviations from ideal behavior occur at lower concentrations for electrolyte solutions than for solutions in which the solute species are uncharged? [6 marks]
 - (b) Calculate γ_{\pm} for a 0.0080 *m* solution of K₂SO₄ at 298K. Assume complete dissociation. [6 marks]
 - (c) Calculate the ionic strength in a solution that is 0.0750 m in K_2SO_4 , 0.0085 m in Na_3PO_4 , and 0.0150 m in $MgCl_2$. [8 marks]
- 5 (a) Force field energies are expressed as a sum of terms; arrange these terms in order of their relative importance by completing the table below.

Term	Scale (kcalmol ⁻¹)
(i)	100
(ii)	10
(iii)	1
(iv)	2
(v) Electrostatic	0.5
(vi)	0.1

[5 marks]

- (b) State the two primary limitations of the Hartree Fock method.[4 marks]
- (c) Which of the following reactions are isodesmic?
 - (i) $H_2O \rightarrow H + OH$;
 - (ii) $CH_3Cl + propane \rightarrow i-propyl chloride + methane;$

- (iii) benzene + 3 $H_2 \rightarrow$ cyclohexane;
- (iv) $HOOH + CH_3OOF \rightarrow HOOF + CH_3OOH$.

[2 marks]

- (d) Which of the following is the exception? Give reasons
 - (i) AM1
 - (ii) BP86
 - (iii) MP2
 - (iv) B3LYP
 - (v) 6-311G

[3 marks]

(e) What is the fundamental approximation that is made in Hartree-Fock theory?

[3 marks]

- (f) Consider a molecule of oxygen ($\mu = 8 \text{ g mol}^{-1}$), which has a vibrational wavenumber $v/c = 1580 \text{ cm}^{-1}$. What is the force constant for this molecule, in N m⁻¹? [3 marks]
- 6. Consider the half-cell reaction

$$Pt(s)|Mn^{2+}(aq, a_{\pm} = 0.0150), Mn^{3+}(aq, a_{\pm} = 0.200)||Zn^{2+}(aq, a_{\pm} = 0.100)|Zn(s)|$$

(a) Determine the half-cell reactions and the overall cell reaction, calculate the cell potential, and determine the equilibrium constant at 298.15 K for the cell.

[4+2+3+4 marks]

(b) Is the cell reaction spontaneous as written?

- [3 marks]
- (c) Why can batteries only be recharged a limited number of times? [2 marks]
- (d) For the above cell, state the anode and cathode.

[2 marks]

END OF QUESTION PAPER