MScEd Mathematics

METRIC SPACES AND TOPOLOGY

Time: 3 hours

Candidates should attempt at most FOUR questions. Marks will be allocated as indicated

- A1. (a) Let **Z** be the set of all integers and let m be a fixed positive integer. Two integers a and b are said to be congruent modulo m, symbolized by $a \equiv b \mod b m$, if a-b is exactly divisible by m. Show that this is an equivalence relation and describe the equivalence sets and state the number of the distinct equivalent sets. [8]
 - (b) Define a metric on a set X. [3]
 - (c) Let $X = \mathbf{R}^n$ or \mathbf{C}^n for $x = (x_1, x_2, x_3, ..., x_n), y = (y_1, y_2, y_3, ..., y_n)$. Define $d: X \times X \longrightarrow \mathbf{R}$ by $d(x, y) = [\sum_{i=1}^n (x_i y_i)^2]^{\frac{1}{2}}$. Prove that (X, d) is a metric space. [8]
 - (d) Let A and B be subsets of a metric space. Show that
 - (i) If $A \subset B$ then $A^0 \subset B^0$. [2]
 - (ii) $(A \cap B)^0 = A^0 \cap B^0$. [4]
- **A2.** (a) For any sets A and B, prove that
 - (i) $(A-B) \cap B = \emptyset$. [4]
 - (ii) $(A \cap B)^c = A^c \cup B^c$. [4]
 - (b) Let X be a metric space. Is the following statement correct? $F \subset X$ is closed if and only if E contains all its limit points. Justify your reasoning. [6]
 - (c) What does it mean to say that a subset S of a metric space X is sequentially compact?
 - (d) Let X be a metric space. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $x_n \to x$ and $y_n \to y$, show that $d(x_n, y_n) \to d(x, y)$. [9]
- **A3.** (a) Consider the metric space C[0,1] with the metric d_{∞} and let $f \in C[0,1]$ be fixed, $f \neq 0$. Show that $F: C[0,1] \longrightarrow \mathbf{R}: g \longrightarrow \int_0^1 f(x)g(x)dx$ is continuous for every $g \in [0,1]$.
 - (b) (i) Define a nowhere dense subset S of a metric space. [3]

- (ii) Given that $S \subset T \subset X, T$ nowhere dense in X, show that S is nowhere dense in X. (iii) Given that $S \subset T \subset X$, S nowhere dense in T, show that S is nowhere dense [5] (c) Prove that a compact set S in a metric space X is closed. (a) Let T_1 and T_2 be two topologies on a non-empty set X. Show that $T_1 \cap T_2$ is also A4. [8] a topology on X. [6] (b) Show that the union of two topologies is not necessarily a topology. (c) Let $x = \{a, b, c, d\}$. Determine whether or not each of the following classes of subsets of X is a topology on X. $T_1 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}\$ $T_2 = \{X, \emptyset, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}\$ $T_3 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}\}.$ [11](a) Let A be the set on non-zero integers and let \approx be the relation on $A \times A$ defined A5. as follows: $(a, b) \approx (c, d)$ whenever ad = bc. [8] (i) Prove that \approx is an equivalence relation. (ii) Let $A = \{1, 2, 3, ..., 15\}$. Let \approx be the equivalence relation on $A \times A$ defined by $(a, b) \approx (c, d)$ if ad = bc. Find the equivalence classes of (3, 2). [2] [4](b) Show that a subset of a set of first category is also of first category. (c) Prove that if G_n is a sequence of non-empty open and dense subsets of a complete metric space X, then $G = \bigcap_{i \in N} G_i$ is dense in X. |11| (a) Let X be a metric space. Prove that if G_1 and G_2 are open then $G_1 \cap G_2$ is A6. open. (b) Let (X, d) and (Y, P) be metric spaces and $f: X \to Y$. Prove that the following statements are equivalent. 1. f is continuous on X2. for any open set $G \subset Y$, $f^{-1}(G)$ is open in X. 3. for any closed set F in Y, $f^{-1}(F)$ is closed in X. [8] (c) Let M be closed proper subspace of a normed linear space X. Then $\exists z \in X$: ||z|| = 1 and $||y - z|| > 1 - \epsilon, \forall \epsilon > 0, \forall y \in M$.
 - END OF QUESTION PAPER

(d) let (X, d) be a complete metric space and f a contraction of X. Then there exist unique $x_0 \in X : f(x_0) = x_0$. Prove that the point x_0 is called a fixed point of