Bindura University of Science Education

Faculty of Science Education

AUG 2024

Department of Science and Mathematics Education

Programmes: HBSc Ed (Mathematics)

Course: MT207 Analysis

Duration: Three hours

Semester Examinations

Instructions to candidates

- (i) Answer all questions in Section A and two questions from Section B.
- (ii) Begin each question on a fresh page.

Section A [40 marks].

Answer all questions from this section being careful to number them A1 to A4.

A1. (a) Prove that
$$1 + nx \le (1 + x)^n$$
 for $n \ge 2$.

[7]

(b). Suppose f and g are continuous on [a, b] and differentiable on (a, b). Prove that if

$$f'(x) = g'(x)$$
 on (a, b) then f and g differ by a constant.

[4]

(c) Prove that the multiplicative inverse of a non-zero element of a field $\mathbb R$ is unique

[5]

A2. Let $S \subseteq \mathbb{R}$ be non-empty and bounded above. Then for $u \in \mathbb{R}$ to be a least upper bound it is necessary and sufficient that (i) u is upper bound of S,

(ii). for every
$$\varepsilon > 0$$
, $\exists x \in S$ such that $u - \varepsilon < x$

A3. Prove that
$$\lim_{x\to\infty} \frac{\sqrt{3x^2+4}}{x} = \sqrt{3}$$
.

[8]

A4. Prove that a bounded monotone sequence converges

[6]

Section B: [60 marks]

Answer two questions from this section being careful to number them B5 to B7.

B5. (a) A sequence (a_n) of real numbers is defined by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2 + a_n}$.

(i). Prove that (a_n) is a bounded monotone increasing sequence.

[8]

(ii). Hence, determine its limit.

[6]

(b) . Prove that a subset of $\mathbb R$ is closed if and only if contains its boundary points.

[8]

(c). Prove that if a function, f is continuous on [a, b] then f is Riemann integrable.

[8]

B6. (a). Define a cut in \mathbb{R} .

[3]

- (b). Prove that if an ordered paired (A, B) of non-empty subsets of \mathbb{R} form a cut in \mathbb{R} , then
- there is a unique element ε that satisfies: $a \le \varepsilon$, $\forall a \in A$ and $\varepsilon \le b \ \forall b \in B$.

[15]

- (c). Prove that a sequence (a_n) converges to a real number L iff for every $\varepsilon > 0$, all
- but a finite number of the terms of (a_n) lie in the interval $(L \varepsilon, L + \varepsilon)$.

[12]

B7. (a). Let f be a function defined on [a, b] and suppose f(x) is differentiable

at $x_o \in (a, b)$ prove that f is continuous at x_0 .

`[10]

- (b). Define the following terms:
 - (i). a partition P of an interval [a, b],

[3]

- (ii). a lower and upper Riemann sum of a function f with respect to the partition P
- [3]

(c). State Riemann condition for an integrability of a function f.

[4]

(d). State and prove the intermediate value theorem (IVT).

[8]