

BINDURA UNIVERSITY OF SCIENCE EDUCATION Faculty of Science and Engineering Department of Engineering and Physics

BACHELOR OF SCIENCE HONOURS DEGREE Environmental Physics

HPH113

Mathematics for Physicists I

Duration: Three (3) Hours

Answer any <u>THREE</u> questions. Each question carries 33 marks.

Clearly show <u>ALL</u> working

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Question 1

(a) Express the following complex numbers in polar form $re^{i heta}$:

$$z_1 = i + \sqrt{3} \qquad \qquad z_2 = i - \sqrt{3}$$

Write θ as a rational number times π .

[6]

(b) Show that the two square roots of $re^{i\theta}$ are $\pm \sqrt{r} e^{i\theta/2}$. Hence find the square roots of

$$z_3 = i2 z_4 = 2 + i2\sqrt{3} [8]$$

(c) Solve the polynomial equation with real coefficients

$$z^7 - 4z^6 + 6z^5 - 6z^4 + 6z^3 - 12z^2 + 8z + 4 = 0$$

- (i) by examining the effect of setting z^3 equal to 2; and then
- (ii) by factorising and using the binomial expansion of $(z + a)^4$.

Find the seven roots of the equation.

[12]

(d) Find a closed-form expression for the inverse hyperbolic function

$$y = \sinh^{-1}x \tag{7}$$

Question 2

(a) Sum the series

$$S(x) = \frac{x^4}{3(0!)} + \frac{x^5}{4(1!)} + \frac{x^6}{5(2!)} + \cdots$$

[8]

(b) Find the interval of convergence and test the end points for the power series:

$$P(x) = 1 + 2x + 4x^2 + 8x^3 + \dots$$
 [5]

(c) Starting from the Maclaurin series for $\cos x$, show that

$$(\cos x)^{-2} = 1 + x^2 + \frac{2x^4}{3} + \cdots$$

Deduce the first three terms in the Maclaurin series for tan x.

6

(d) If $f(x) = \sinh^{-1}x$, and its n^{th} derivative $f^{(n)}(x)$ is written as

$$f(n) = \frac{P_n}{(1+x^2)^{n-1/2}}$$

where $P_n(x)$ is a polynomial (of order n-1), show that the $P_n(x)$ satisfy the recurrence relation

$$P_{n+1}(x) = (1+x^2)P_n'(x) - (2n-1)xP_n(x)$$

Hence generate the coefficients necessary to express $sinh^{-1}x$ as a Maclaurin series up to terms in x^5 .

[14]

Question 3

(a) Find the total differential of the function f(x, y) = yexp(x + y).

[5]

(b) What is the approximate percentage change in the volume of a right circular cone if the radius of the base is changed by 3 % and the height is changed by 2 %?

[6]

(c) Show that the function $f(x,y) = x^3 \exp(-x^2 - y^2)$ has a maximum at the point $(\sqrt{3/2}, 0)$, a minimum at $(-\sqrt{3/2}, 0)$ and a stationary point at the origin whose nature cannot be determined by the above procedures.

[10]

(d) A system contains a very large number N of particles, each of which can be in any of R energy levels with a corresponding energy E_i , $i=1,2,\cdots,R$. The number of particles in the i^{th} level is n_i and the total energy of the system is a constant, E. Find the distribution of particles amongst the energy levels that maximises the expression

$$P = \frac{N!}{n_1! \, n_2! \cdots n_R!}$$

subject to the constraints that both the number of particles and the total energy remain constant, that is,

$$g = N - \sum_{i=1}^{R} n_i = 0 h = E - \sum_{i=1}^{R} n_i E_i = 0 [12]$$

Question 4

(a) Find the partial fraction decomposition of the functions

$$g(x) = \frac{4}{x^2 - 3x} \qquad f(x) = \frac{x - 6}{x^3 - x^2 + 4x - 4}$$
 [12]

(b) Prove by induction that

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$

[6]

- (c) Show that $Q(n) = n^4 + 2n^3 + 2n^2 + n$ is divisible by 6 for all positive integer
 - [10]

(d) The total relativistic energy of a particle of mass m and velocity v is

$$E = mc^2 \left(1 - \frac{v^2}{c^2} \right)^{-1/2}$$

Compare this expression with the classical kinetic energy, $mv^2/2$.

[5]

Question 5

Use D'Alembert's ratio test to determine the behaviour of the series: (a)

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^n}{n^2} \qquad \sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{n^2 + 1}$$

Cauchy's root test may be useful in testing for convergence, especially if the n^{th} term of the series contains an n^{th} power. Use it to test the series:

$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$$

[9]

Use the integral test to describe the behaviour of the Riemann zeta series (b)

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

[8]

(c) By using the logarithmic series, prove that if a and b are positive and nearly equal then

$$\ln \frac{a}{b} \cong \frac{2(a-b)}{a+b}$$

Show that the error in this approximation is about

$$\frac{2}{3} \left(\frac{a-b}{a+b} \right)^3$$

Hint: Let a + b = 2c and $a - b = 2\delta$

[8]

(d) Find the limit of the function

$$\int_{x}^{\pi/2} \left(\frac{y \cos y - \sin y}{y^2} \right) dy$$

as $x \to 0$.

[8]

END OF PAPER

HPH113 Formula sheet

Binomial formula and binomial coefficients

$$(x+y)^n = \sum_{k=0}^{k=n} n_{C_k} x^{n-k} y^k$$
 $n_{C_k} \equiv \frac{n!}{k! (n-k)!} \equiv \binom{n}{k}$ for $0 \le k \le n$

$$-m_{C_k} = (-1)^k \frac{m(m+1)\cdots(m+k-1)}{k!} = (-1)^k \cdot m+k-1_{C_k}$$

$$(1+x)^{-m/2} = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{(m+2n-2)!!}{2^n n! (m-2)!!} x^n \qquad m = 1,2,3 \cdots$$

$$(2n)!! = 2^n n!$$
 $(2n-1)!! = \frac{(2n)!}{2^n n!}$ $0!! = (-1)!! = 1$

Trigonometric identities

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$
 $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$1 + tan^2\theta = sec^2\theta \qquad cot^2\theta + 1 = cosec^2\theta \qquad tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2\theta = 2 \sin \theta \cos \theta$$
 $\cos 2\theta = 1 - 2 \sin^2 \theta$ $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$

$$\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \qquad \sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \qquad \cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

$$\cos(n\pm1)\theta = \cos n\theta \cos\theta \mp \sin n\theta \sin\theta \qquad \sin(n\pm1)\theta = \sin n\theta \cos\theta \pm \cos n\theta \sin\theta$$

Standard Maclaurin series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \quad \text{for } -\infty < x < \infty,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \quad \text{for } -\infty < x < \infty,$$

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \quad \text{for } -1 < x < 1,$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \quad \text{for } -\infty < x < \infty,$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \quad \text{for } -1 < x \le 1,$$

$$(1+x)^n = 1 + nx + n(n-1)\frac{x^2}{2!} + n(n-1)(n-2)\frac{x^3}{3!} + \cdots \quad \text{for } -\infty < x < \infty.$$