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Question 1
(a)  Express the following complex numbers in polar form retd,
z1 =1+ V3 Zn =1— V3
Write @ as a rational humber times 7.
_ _ [6]
(b) Show that the two square roots of ret® are +v7 et 0/2. Hence find the
square roots of
73 =102 z4 = 2 +i2V3
[8]
(c) Solve the polynomial equation with real coefficients
27 — 426 4625 — 621 + 623 — 1222 + 82+ 4 =0
(i) by examining the effect of setting z3 equal to 2; and then
(ii) by factorising and using the binomial expansion of (z + a)*.
Find the seven roots of the equation.
[12]
(d) Find a closed-form expression for the inverse hyperbolic function
y = sinh™1x
[7]
Question 2
(a)  Sum the series
x* x5 x©
S(x) =
@ =z taay sy
[8]

(b)

Find the interval of convergence and test the end points for the power series:

P(x) = 1+ 2x + 4x% + 8x3 +

[5]
Starting from the Maclaurin series for cos x, show that
4
2x
(cos¥) ™% =1+ x2 +--§—-+
Deduce the first three terms in the Maclaurin series for tan x.
[6]
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(d) Iff(x) = sinh~Lx, and its nt! derivative f(n) (x) is written as
Pn
f(n) =
n—1/2
(1 + xz) /

where Py (x) is a polynomial (of order n — 1), show that the Pp(x) satisfy the
recurrence relation

P+ 100 = (1+22) Bi(x) — (20— DxPp(x)

Hence generate the coefficients necessary to express sinh™1x as a Maclaurin

series up to terms in x>,

[14]

Question 3

(a) Find the total differential of the function f(x,y) = yexp(x + y).
[5]
(b) What is the approximate percentage change in the volume of a right circular
cone if the radius of the base is changed by 3 % and the height is changed
by 2 %?

| (6]
(c) Show that the function f(x,y) = x3 exp(~—x2 - yz) has a maximum at the
point (1/ 3/2, 0), a minimum at (—\/ 3/2, 0) and a stationary point at the
origin whose nature cannot be determined by the above procedures.
[10]

(d) A system contains a very large number N of particles, each of which can be
in any of R energy levels with a corresponding energy £;,i = 1,2, -, R,
The number of particles in the ith level is n; and the total energy of the system
is a constant, £. Find the distribution of particles amongst the energy levels
that maximises the expression

NI

T nqlnglong!

subject to the constraints that both the number of particles and the total energy
remain constant, that is,

R
Q;N""Zﬂizo hmeZniEi=0
i=1 ]

[12]
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Question 4

(a) Find the partial fraction decomposition of the functions
4 x—06
(x) =
! x3 —x2 4 4x — 4

(x) =
g x2 — 3x

[12]

(b} Prove by induction that
n

Zr:%n(n+1)

r=1

[6]
(c) Show that Q(n) = n? + 2n3 + 2n? + nis divisible by 6 for all positive integer
values of 1.

(d) The total relativistic energy of a particle of mass m and velocity v is 1ol
£ =mc? (1 — 1—}“2—-)“1/2
c2 \
Compare this expression with the classical kinetic energy, mv? /2.
(5]

Question 5

(a) Use D’'Alembert’s ratio test to determine the behaviour of the series:

i (_1)71—12?1 i (_1)?‘1—'1n
n n="1 n2 +1

Cauchy’s root test may be useful in testing for convergence, especially
if the nt" term of the series contains an nth power, Use it to test the series:

> ()"
n+1
n=1
[9]
(b)  Use the integral test to describe the behaviour of the Riemann zeta series
o0
Z 1
nP
n=1
[8]
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(d)
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By using the logarithmic series, prove that if ¢ and b are positive and nearly

equal then
2{a —b)

il =
"= Ta+b

Show that the error in this approximation is about
2 (a - b)3
3\a+b

Hint: Leta+ b =2canda~—b = 268

[8]
Find the limit of the function
/2
ycosy — siny
f ( y? ) dy
X
asx — 0.
(8]

END OF PAPER
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HPH113 Formula sheet

Binomial formula and binomial coefficients

k=n

n_Nne. on—kok e o— ™ ("
G+ ) _Z ¢« ky Ck:k!(n—-k)!:(k) for0 <k <n

k=0

mm+1)(m+k—1) _

_.-m .
Ck = (-

- — 2
A7 = ) 0 (ZT:nT(Zr;l— 2))!: o m=1ase
Cmll=2nt @r—Dl= (22“’;): o= (-1l =1

Trigonometric identities
sin{A+ B) = sinAcosB £ cosAsinB cos(A+ B) =cosAcos B FsinAsinB

ftanA 4+ tan B
1FtanAtanB

1+ tan?0 = sec’®  cot?0 + 1= cosec’d  tan(A +B) =

) , ] 2tan B
sin28 = 2sin@cosB cos28=1-2sin*8 tan2l =_——————
1—tan? 8

A+ B A—B A+B\  (A—-B
sinA+sinB=25in( )cos( ) sinA—sinBchos( )sm( )

2 2 2 Z

A+ B A—~B (A+B A—B
cosA+cosB=Zcos( 5 )cos( 2 ) cosA—cosB=-23m( 5 )sin( 5 )

cos(n + 1)8 = cosné cosf + sinnd sin @ sin(n + 1)8 = sinnf cos@ £ cosnd sinb



Standard Maclaurin series

&)

E¥ ]
-l

\ X X x
S'm“'\—ﬁ"l_?f—ﬁ-l_“ for —oo < x < o,

x2 xt x6
cosxml——!mi—:ﬂ-—()—!-k-- for —o<x <o,

3.5 7

1 X X X
AN T K = K e e e e for =l < x <
3+5 7+
2 3 4

X T S I T —
e—1+x+2E+3!+4!+ for —oo < x < oo,

2 3 4
En{i+x)=x—%+'~;——%+--- for —l<xg1,
x? x?

'—f-n(nml){an)?—f—»-- for —mm<x<on

({4+x)"=14nx+nn— i)'z—



