BINDURA UNIVERSITY OF SCIENCE EDUCATION FACULTY OF SCIENCE AND ENGINEERING

AEH507

Department of Engineering and Physics Bachelor of Science (Honours) Degree in Agricultural Engineering Part III Control Systems

Time: 3 HOURS (100 Marks)

INSTRUCTIONS

Answer any FOUR questions. Each question carries 25 marks

1	(a)	With the aid of a block diagram describe elements that make u)
	, ,	an automatic control system.	[8]
	(b)	Describe five advantages of closed loop control system over ope	en
		loop control system.	[5]
	(c)	State five characteristics of an ideal control system.	[5]
	(d)	Discuss the effect of positive feedback on stability of control	
		systems.	[2]
2	(a)	A unity feedback control system is characterised by the	
		following open loop transfer function $G(s) = \frac{0.4s+1}{s(s+0.6)}$.	
		Determine:	
		i) The transient response for unit step input and	
		sketch the response.	[10]
		ii) The maximum overshoot,	[5]
		iii) The corresponding peak time.	[5]
	(b)	Find the Laplace Transform of the following differential	
		equation.	[5]
		$\frac{d^2x_0}{dt^2} + 3\frac{dx_0}{dt} + 2x_0 = 0$	

Initial conditions $x_0 = 4$, $\frac{dx_0}{dt} = 3$

(a) The graph below (Figure Q3) shows Time Response specifications in symbol form. Define any four specifications shown.

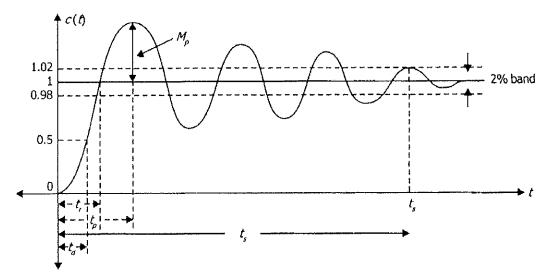


Figure Q3: Time Response

- (b) A mass spring system has the following parameters: Stiffness K = 800 N/m, Mass M = 3 kg, and Damping Coefficient $k_d = 20 \text{ Ns/m}$.
 - i) Calculate the time constant, critical damping coefficient and the damping ratio. [3]
 - ii) Derive the equation for the force required when the piston is accelerating. [3]
 - iii) Use the equation to evaluate the static deflection when F = 12 N. [3]
 - iv) Use the equation to evaluate the force needed to make the mass accelerate at 4 m/s² at the moment when the velocity is 0.5 m/s. [3]
- 4 (a) Use the graph below (Figure Q4) the answer the following questions:

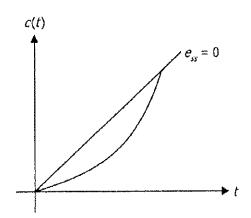


Figure Q4

(i) State the type of input.

[1]

(ii) State type of system

- [2]
- (ii) Show that, $K_V = \infty$ and $e_{ss} = 0$ for ramp input type 2 and higher-order systems.
- [4]
- (b) For the closed loop control system shown below, shown that

$$|M(j\omega)| = \left| \frac{G(j\omega)}{1 + G(j\omega)H(j\omega)} \right|$$

and
$$\angle M(j\omega) = \angle G(j\omega) - \angle [G(j\omega)H(j\omega)]$$

[8]

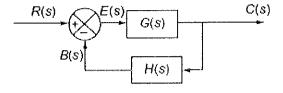


Figure 4 (b): Closed Loop Control System

(c) The characteristic equation of a system is given here. Identify the poles of the system.

[5]

$$10s^2 + 4s + 15 = 0$$

(d) Prove the following rule for eliminating feedback.

[5]

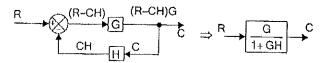


Figure 5

- 5 Using Mason's gain formula determine the following from the given signal flow diagram:
 - (a) Identify the number of forward paths and their gain,
 - (b) Combination of non-touching loops, [5]

[4]

[5]

[12]

- (c) The value of determinant, [4]
- (d) Value of Δ_k , and [6]
- (e) Using Mason's gain formula [6]

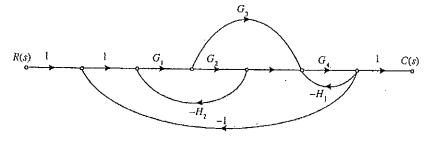


Figure 6

- 6 (a) A hydraulic cylinder has a bore of 60 mm and is controlled with a valve of constant $k_v = 0.06 \text{ m}^2/\text{s}$. Determine:
 - i) The time constant given that x_1 and x_0 are zero when t = 0.
 - ii) The velocity of the piston and [5]
 - ii) The output position after 0.3 seconds when the input is changed to 5 mm. [3]
 - (b) A simple thermal heating system has a transfer function $\frac{\theta_0}{\theta_i} = \frac{1}{(Ts+1)}$

The temperature of the system at any given time is θ_o and is at 30 °C when the set temperature θ_i is changed from 30 °C to 100°C. The time constant T = 7 seconds. Deduce the formulae for how the system temperature changes with time and sketch the graph.