BINDURA UNIVERSITY OF SCIENCE EDUCATION

SCIENCE AND MATHEMATICS EDUCATION DEPARTMENT

DC002/ DCH004: INORGANIC CHEMISTRY

Time:

2Hours

ANSWER QUESTION 1 AND FOUR (4) OTHER QUESTIONS TWO (2) FROM EACH OF THE SECTIONS "A" AND "B". EACH QUESTION CARRIES 20 MARKS

- 1. (a) Define
 - (i) Electron shielding.
 - (ii) Electropositivity.
 - (iii) Effective nuclear charge
 - (iv) lonic radius.

[4.× 2.marks]

· \$ JUN 2024

- (b) State and explain how:
 - (i) Reducing power of group I metals varies down the group.
 - (ii) Oxidising power of group VII elements varies down the Group. [4 marks]
- (c) Give the properties that make d-block elements good construction materials. [4 marks]

SECTION A: ANSWER TWO QUESTIONS FROM THIS SECTION

- 2. Group II metals behave differently in their reactions with H₂O and in air.
 - (a) Describe the reactions of group II elements with water giving balanced reactions for all the reactions that take place.[10 marks]
 - (b) Outline the reactions of the elements with air. [10 marks]
- 3. (a) Discuss the trends of Group 6 hydrides under the following sub-headings:
 - (i) Reducing character.

[3 marks]

(ii) Thermal stability.

[3 marks]

- (b) Oxygen can be prepared from heating some metallic oxides.

 Illustrate this with an equation. [2 marks]
- (c) Outline the manufacture of Sulphuric acid in the Contact process.

 [12 marks]

4. (a) Part of the periodic table is shown below.

			В		N	0	F	Ne
Na		, to the total of				S	Cl	
K	Ca	Cu	W-4H-4H-4					
Cs		***************************************		Pb				Rn

From the elements shown in the table, identify one which:

- (i) Has the lowest first ionisation energy.
- (ii) Has the highest first ionisation energy.
- (iii) Has a hydride that forms the strongest hydrogen bonds.
- (iv) Has a nitrate of formula $X(NO_3)_2$ that gives a brown gas when heated.
- (v) Has a trifluoride with molecules of trigonal shape. [5 marks]
- (b) The six elements in the third period from sodium to sulphur show a change in properties based on structure and bonding. State and explain the change in:
 - (i) metallic character.

[3 marks]

(ii) melting point.

[3 marks]

(iii) electrical conductivity.

[3 marks]

- (c) Choose one metallic and one non-metallic element from these six and for each chosen element describe what you would observe when:
 - (i) The element reacts with oxygen.

[2 marks]

(ii) The oxide reacts with water containing universal indicator.

[4 marks]

SECTION B: ANSWER ANY TWO QUESTIONS FROM THIS SECTION

- 6. (a) Outline the differences between:
 - (i) Elemental silicon and carbon.

[8 marks]

(i) Oxides of silicon and carbon

[10 marks]

(b) Describe the variation in group 4 elements' catenation ability.

[2 marks]

5. Hydrogen can be classified as Group 1, 4 and 7. Outline the chemistry of hydrogen that makes it typical and unlike Group 1, 4 and 7 elements.

[20 marks]

7. (a) Explain the following:

(i) Transition metals are used as catalysts. [3 marks]

(ii) Transition metal ions form colored compounds in solution. [3 marks]

(iv) Transition metals are better electrical conductors than s block metals. [3 marks]

(v) Melting points of transition metals are higher than the melting points the s block metals. [3 marks]

(b) Copy and complete the following table.

d-block element	Catalyst formula	Reaction catalyzed
V		
Fe	***************************************	· · · · · · · · · · · · · · · · · · ·
Ni	- William	****
Pt		

END OF PAPER

[8 marks]

PERIODIC TABLE OF ELEMENTS

																	Noble
Alkal	i																gases
metals	S	·													Hale	ogens	₩
1 1A	Alkal eart	h															18
T _H	meta 2	ls			•							13	14	15	16	. ▼ - 17	8A
1.008	2A											3A	4A		6A	7A	He 4.003
3 Li 6.941	⁴ Be 9.012											5 B 10.8	6 C 1 12.0	7 N 14.01	8 O 16,00	9 F 19.00	Ne Ne 20.18
Na 22.99	12 M g 24.31	3	4	5	6	7	8	9	10	11	12	13 A1	I4 Si	15 P	16 S	I7 Cl	18 Ar
22,99	24.31	21	32	1 23		nsitio	n met	als 27	1 30	30	1 20 "	26.98	28.0	30.97	32,07	35.45	39.95
K 39.10	Ca 40.08	Sc 44.96	22 Ti 47.88	V 50.94	24 Cr 52,00	Mn 54.94	Fe 55,85	Co 58.93	28 Ni 58.69	29 Cu 63.55	$ \begin{array}{c} 30 \\ Zn \\ 65.38 \end{array} $	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 35.47	87.62	³⁹ Y 88.91	40 Zr 91,22	41 Nb 92.91	42 Mo 95,94	Tc (98)	Ru 101,1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114,8	50 Sn 118.7	5t Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La* 138.9	72 Hf 178.5	Ta 180.9	74 W 183,9	75 Re 186.2	76 Os 190,2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 T1 204,4	Pb 207.2	Bi	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra ²²⁶	Ac ** (227)	104 Rf	Db	Sg	107 Bh	108 Hs	109 M t	Uun	Uuu Uuu	Uub		me	tals		no	nmetals

* Lanthanides

**Actinides