€ NOV 2023

BINDURA UNIVERSITY OF SCIENCE EDUCATION SCIENCE AND MATHEMATICS EDUCATION DEPARTMENT DIPLOMA IN SCIENCE EDUCATION

COURSE: DC003/DCH005 PHYSICAL CHEMISTRY 2 HOUR

	TIME			2 HOURS				
OTHE	R OUF	STIONS	N 1 AND TWO QUESTIONS FI FROM SECTION B. EACH QUEST	TION CARRIES 2	O MARKS			
1	(a)	(i) (ii) (iii)	the following terms: pOH. Homogeneous catalysis. Half-life. Rate determining step.		[4x2 marks]			
			fy the oxidizing and reduci	ng agent in t	the following			
	re	actions (i) (ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2Fe Cl ⁻	[2 marks] [2 marks]			
	(c)	Write (i)	expressions that correspond to Solubility product (K _{sp}) for bari	the following; ium hydroxide, I	Ba(OH)2. [3 marks]			
		(ii) (iii)	pK_a for the following reaction HA \rightarrow H ⁺ + pK_w	· A	[3 marks] [2 marks]			
		SECTION A: ANSWER ANY TWO QUESTIONS						
2	A canister of gas, of the type used in camping stoves, contains mainly butane, (CH ₃ CH ₂ CH ₂ CH ₃) under sufficient pressure to cause it to liquefy partially.							
	(a)	(i) (ii) (iii) (iv)	What do you understand by the State the conditions for idealit To which group of organic comto? What type of intermolecular formolecules of butane?	ty npounds does bu	[2 marks] Itane belong [1 mark]			
	(b)	Would Expla	I you expect the gas in the cani	ster to behave i	deally? [3 marks]			
	(c)		ibe how increasing the pressure	on a gas can so	metimes [3 marks]			

Page 1 of 4

- (d) 0.23 g of a gas took up 149.0 cm 3 at 363 K and 1.01 x 10 5 Pa. Use the general gas equation PV = nRT to calculate the average M_r of the gas. [3 marks]
- (e) Suggest a reason why ethane (CH₃CH₃) is a better option than butane for gas stoves in cold climates. [3 marks]
- 3 (a) Use the examples given in brackets to illustrate what is meant by the following terms:
 - (i) Standard enthalpy change of combustion (CH₃OH).[2 marks]
 - (ii) Standard enthalpy change of formation (CH₃CH₃). [2 marks]
 - (iii) Standard enthalpy change of atomisation (Al₂O₃). [2 marks]
 - (iv) Standard enthalpy change of solution (NaCl). [2 marks]
 - (b) (i) Define Hess' law. [2 marks]
 - (ii) Construct the Born Haber cycle for magnesium oxide (MgO).
 [8 marks]
 - (iii) Explain why the 2nd electron affinity of oxygen is positive. [2 marks]
- 4 (a) By means of a diagram show how you would use the standard hydrogen electrode, (SHE), to measure the standard electrode potential of the Cu²⁺(aq) / Cu(s) system. [6 marks]
 - (b) Explain how the following factors affect the nature of the product discharged at the electrodes during electrolysis:
 - (i) Nature of electrode.

[3 marks]

(ii) Concentration.

[3 marks]

- (c) With the aid of a well labelled diagram, show how the electrolysis of water is carried out. Your answer should include the following:
 - Electrodes used
 - The electrolyte used and products
 - Electrode reactions

[8 marks]

SECTION B: ANSWER ANY TWO QUESTIONS.

- 5. (a) Explain the meanings of the following terms;
 - (i) Weak base

[2 marks]

(ii) Strong acid

[2 marks]

(iii) Amphoteric compound

[2 marks]

(b) Identify the conjugate acid-base pairs in the following reactions:

A $NH_4^+ + OH^- \longrightarrow NH_3 + H_2O$ B $HCl + H_2O \longrightarrow H_3O^+ + Cl^-$

[2x4 marks]

(c) Outline the manufacture of ammonia by the Haber process paying particular attention to reaction conditions and how they affect yield. [6 marks]

6 (a) (i) Draw a diagram to show how you would measure the standard cell potential of an electrochemical cell containing Cl₂(g)/Cl and Na⁺(aq)/Na(s). [6 marks]

(ii) Calculate the standard cell potential of this electrochemical cell.

[3 marks]

(b) Dinitrogen pentoxide, (N_2O_5) , can be produced by the following sequence;

I $N_2(g) + O_2(g) \longrightarrow 2NO(g)$ $\Delta H = +180 \text{Kj/mol}$ II $NO(g) + 1/2O_2(g) \longrightarrow NO_2(g)$ $\Delta H = -57 \text{Kj/mol}$ III $2NO_2(g) +1/2O_2(g) \longrightarrow N_2O_5(g)$ $\Delta H = -55 \text{Kj/mol}$

- (i) Explain why reaction I occurs in car engines. [2 marks]
- (ii) Suggest why reaction I is endothermic. [3 marks]
- (iii) Write an equation that corresponds to the standard enthalpy change of formation of N₂O₅. [2 marks]
- (iv) Use the data given above to calculate the enthalpy of formation of N_2O_5 . [4 marks]
- 7. (a) Use the data in the following table to find:

(i) Order of reaction with respect to L and M.

[2 marks]

(ii) Overall order of reaction.

[1 mark] [2 marks]

(iii) Rate expression.

[Z IIII ha units

(v) A value for the rate constant, (k) including the units.

[2 marks]

Experiment No.	Concentration		Rate of loss of L mol.dm ⁻³ /s
	[L] / mol/dm³	[M] / mol/dm³	
1	0.20	0.10	1.6x10 ⁻⁷
2	0.30	0.10	1.6x10 ⁻⁷
3	0.40	0.40	6.4x10 ⁻⁷

(b) For the following reaction;

$$A + B \longrightarrow C + D \quad \Delta H < 0$$

Draw an energy profile diagram to show how the activation energy, (E_a) , varies for a catalyzed and uncatalyzed reaction.

[4 marks]

- (c) What do you understand by the following terms?
 - (i) Homogeneous catalysis.
 - (ii) Enzyme.

[2x2 marks]

(d) Draw a Maxwell-Boltzmann distribution curve to show the effect of a catalyst on the rate of a chemical reaction [5 marks]

END OF PAPER