BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT: ENGINEERING AND PHYSICS

PROGRAMME BSc HONOURS DEGREE IN NETWORK ENGINEERING

COURSE CODE PH203 (1): CIRCUIT ANALYSIS

DURATION: 3 HOURS TOTAL MARKS: 100

INSTRUCTIONS TO CANDIDATES

WOV 2024

Answer question one in Section A and any three questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

SECTION A

1	(a)	Convert the following from rectangular to polar form: $C = 3 + j 4$.	[4]
	(b)	Determine the sum of $C_1 = 2 + j \cdot 4$ and $C_2 = 3 + j \cdot 1$.	[4]
	(c)	Find the product of C_1 and C_2 if $C_1 = 2 + j \cdot 3$ and $C_2 = 5 + j \cdot 10$.	[4]
	(d)	Given that ${\it C}_1$ = 5 $\angle 20^{\circ}$ and ${\it C}_2$ = 10 $\angle 30^{\circ}$, calculate the product of ${\it C}_1$ and ${\it C}_2$.	[4]
	(e)	Transform the following sinusoid in time domain to phasor domain: $i = 6\cos(50t - 40^{\circ})$ A.	[5]
	(f)	Convert the sinusoid corresponding to the following phasor to time domain: $V = -10 \ \angle 30^{\circ} \ V$.	[5]
	(g)	The instantaneous current of an ac sinusoidal current is given by $=I_mcos\omega t$. Show that $I_{rms}=rac{I_m}{\sqrt{2}}$.	[6]
	(h)	Distinguish between ideal and practical sources in electric circuit theory.	[2]
	(i)	Use resistor colour codes to determine the resistances of resistors with	the
	(1) (2) (3)	following band colours: green, brown, blue, silver. yellow, violet, silver. grey, red, gold.	[2] [2] [2]

SECTION B

2 (a) Find the equivalent resistance between A and B in Fig. 2.1 using the Wye-Delta transformation. [18]

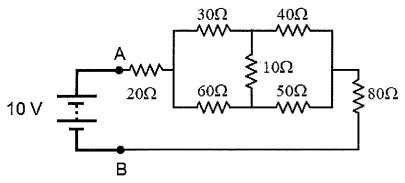


Fig. 2.1

- (b) Hence determine the value of the current supplied by the power source. [2]
- 3 (a) Determine the current through the 1 Ω resistor in the circuit in Fig. 3.1 using Superposition Theorem. [16]

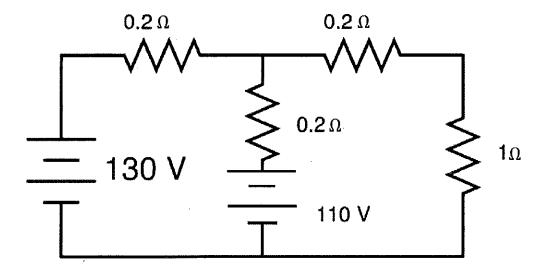


Fig. 3.1

(b) Calculate the amount of heat energy dissipated in the 1 Ω resistor in part (a) over a time interval of 1 hour. [4]

EX0012 Annex 1

In the network of Fig. 4.1, find the Thevenin voltage (V_{TH}), Thevenin resistance (R_{TH}) and the load current I_L flowing through and load voltage (V_L) across the load resistor $R_L = 5 \text{ k}\Omega$ using Thevenin's Theorem.

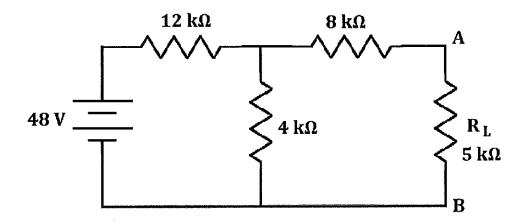


Fig. 4.1

5

In the network of Fig. 5.1, find the Norton current (I_N), Norton resistance (R_N) and the load current I_L flowing through and load voltage (V_L) across the load resistor $R_L = 1.5 \Omega$ using Norton's Theorem. [20]

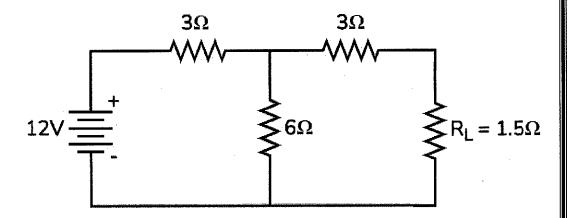


Fig. 5.1

6

A current waveform is described by the function: $i(t) = \begin{cases} 5t, & 0 < t < 2 \\ -10, & 2 < t < 4 \end{cases}$ as shown In Fig. 6.1.

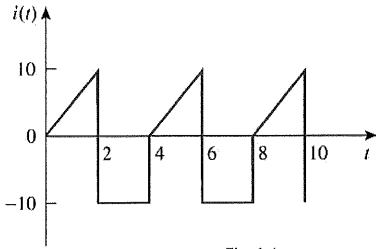


Fig. 6.1

The current is passed through a $2-\Omega$ resistor.

(a) Find the rms value of the current.

[18]

(b) Calculate the average power absorbed by the resistor.

[2]