BINDURA UNIVERSITY OF SCIENCE EDICATION FACULTY OF SCIENCE EDUCATION DEPARTMENT OF ENGINEERINGAND PHYSICS

Bachelor of Science Honours Degree in Electronic Engineering
EEN5205 - Communication Systems

PI

Time Allowed: 3 Hours

Total Marks: 100

Special Requirements: Scientific Calculator, rule, pen, pencil

INSTRUCTIONS

1. Answer any FIVE (5) questions

2. The question paper contains SEVEN (7) questions

2. Each question carries 20 marks

- 1(a)With the aid of a suitable diagram explain the ADSL splitter functionality. Include the frequency spectrum of respective signals on your diagram at the input and output of each device.
 [10]
 - (b)(i) Illustrate the frequency spectrum of a twisted pair line carrying voice and data.[5](ii) Explain the relationship between the bandwidth of each signal and the speed of data in each channel.[5]
- **2(a)**Figure below shows a GPON network operation. Use figure below to answer (i), (ii), (iii) and iv below.

Optical Distribution Network Splitter B

ODN

ONT (Optical Network Termination)

(i) State transmission mode used in direction A and B.

[2]

(ii) State wavelengths used in direction A and B.

OLT

(Optical Line

Termination)

- [2]
- (iii) In which direction do we implement Dynamic Bandwidth Assignment and why.[2]
- (iv) Direction A and B have important names. Give the respective name of each.[2]
- (b) With the aid of well labelled diagrams explain the following Type B fibre back-up GPON protection modes. [4]
- (c) In GPON explain what you understand by ranging. Explain is significance. [2]
- (d)With the aid of a well labelled diagram explain GPON operation principle in the upstream direction.
 [6]
- **3(a)** Compare, contrast step-index, and graded index optic fibres. [5]
 - (b) When the mean optical power launched into an 8 km length of fiber is 120 μ W, the mean optical power at the fiber output is 3 μ W. *Determine*:
- (i) The overall signal attenuation or loss in decibels through the fiber assuming there are no connectors or splices; [2]
- (ii) the signal attenuation per kilometre for the fibre.
- [2]
- (iii) the overall signal attenuation for a 10 km optical link using the same fiber with splices at 1 km intervals, each giving an attenuation of 1 dB; [2]

(iv) the numerical input/output power ratio in (c).(c) Draw suitable diagrams to illustrate the following conditions in an optical file	[2] ber:
Angle of incidence is greater than the critical angle of incidence	[4]
(d) As it is essential that the light should remain confined within the fiber core of light should escape from it towards cladding. Then why is cladding necess practical optical fiber?	
 4(a) Distinguish between low-, medium-, and geostationary earth orbits, and enadvantages and disadvantages of each for communication. (b) Why do all geostationary satellites orbit the earth at the same distance an equator? (c) Find the velocity and the orbital period of a satellite in a circular orbit (i) 500 km above the earth's surface (ii) 36,000 km above the earth's surface (d) At 10 GHz, a ground station transmits 128W to a satellite at a distance of ground antenna gain is 36 dB with a pointing error loss of 0.5 dB. The satellite gain is 38 dB with a pointing error loss of 0.5 dB. The atmospheric loss in sassumed to be 2 dB and the polarization loss is 1 dB. Calculate the received level and output SNR. The satellite receiver has a noise figure of 6 dB at retemperature. A bandwidth of 5MHz is required for a `channel, and a marging dB is used in the calculation. 	[7] and above the [3] [2] [2] 2000 km. The Ilite antenna pace is and input power
 5(a) State four features of microwaves. (b) Explain the following advantages of microwaves (i) Increased bandwidth. (ii) Improved directivity of antenna. (iii) Reduced fading effect and higher reliability. (iv) Low attenuation. (v) Lower power requirements (c) Briefly explain four applications of microwaves. 	[4] [2] [2] [2] [2] [8]
6(a) A telephone line normally has a bandwidth of 3000 Hz (300 to 3300 Hz) as data communications. The signal-to-noise ratio is usually 3162. For this channe the capacity.	signed for l calculate [3]
 (b) With the aid diagrams briefly explain the following line coding techniques. (i)Unipolar Non-Return-to-Zero (NRZ) (ii)Polar Non-Return-to-Zero (NRZ) (iii)Return to Zero(RZ) (c) State five characteristics of line coding techniques. (d) Write the ASCII code for the word 'HELLO' using even parity by filling in the parity bit at eighth bit position in figure below. 	[3] [3] [3] [5]

	8	7	6	5	4	3	2	1
Н		1	0	0	1	0	0	0
Е		1	0	0	0	1	0	1
L		1	0	0	1	1	0	0
L		1	0	0	1	1	0	0
O		1	0	0	1	1	1	1

Bit positions*

* The parity bit is at eighth bit position.

- 7(a) With the aid of block diagrams where possible, explain the following TV applications.
 - (i) Closed Circuit Television (CCTV)

[4]

(ii)Satellite TV

[4]

- (b) The scanning in camera and scanning in the picture tube should be *synchronised*. What does that mean. [2]
- (c) What is the effect of not having synchronization between the scanning in the camera and scanning in the TV receiver. [2]
- (d) Explain why FM is preferred for sound transmission in TV channels and why AM is preferred for video transmission. [3]
- (e) With the aid of a suitable diagram, explain Vestigial Sideband Transmission (VSB)[5]

The End