BINDURA UNIVERSITY OF SCIENCE EDUCATION

DM005: GEOMETRY AND TRIGONOMETRICAL RATIOS.

Time: 3 hours

Candidates may attempts ALL questions in Section A and at most TWO questions in Section B. Each question should start on fresh page.

SECTION A (40 marks)

A1. If M (-1;4) is the midpoint of the line segment AB, and the coordinates of A(3;6) are given, find the coordinates of the end point B.

[7]

A2. Determine the equation of the straight line that passes through the points

$$P(1;2)$$
 and $Q(3;8)$ in the form $y = mx + c$

[8]

A3 A(-4;7), B(4;5), C(0;-1) and D(a; b) are vertices of a parallelogram ABCD.

(i) Draw the parallelogram on graph paper.

[3]

(ii) Find the midpoint of the diagonal AC.

[21

(iii) Use information that you have to find the coordinates of point D.

[2]

(iv) Determine the equation of the straight line that passes through point A and point B on the parallelogram in the form y = mx + c

[3]

A4. The points A(7;1), B(7;9) and C(1;9) are on the circumference of a circle.

(a) Find the equation of a circle.

[8]

(b) Find an equation of the tangent to the circle at B.

[7]

SECTION B (60 Marks)

Candidates may attempt TWO questions being careful to number them B5 to B7.

B5. (a) Show that
$$\frac{\sin(90^{\circ} + x)\cos x \tan(-x)}{\cos(180^{\circ} + x)} = \sin x$$
.

[8]

(b) If $\sin 36^\circ = m$ and $\cos 24^\circ = n$ determine in terms of m and / or n

(c) Simplify
$$\frac{2\cos 285^{\circ}\cos 15^{\circ}}{\cos (45^{\circ}-x)\cos x - \sin (45^{\circ}-x)\sin x}$$

[12]

B6.(a) Calculate the value of
$$(\sin 3x - \cos 3x)^2$$
 if $\sin 6x = \frac{-2}{5}$.

(b) In the diagram, \triangle ABC has DE || BC. Prove the theorem that states $\frac{AE}{EC} = \frac{AD}{DB}$.

(c). (i) Express $4\sin\theta - 3\cos\theta$ in the form $R\sin(\theta - \alpha)$, where R > 0 and $0^{0} < \alpha < 90^{0}$, stating the value of α correct to 2 decimal places. [4]

Hence

(ii) Solve the equation $4\sin\theta - 3\cos\theta = 2$,

[8]

giving all values of θ such that $0^0 < \theta < 360^0$ Write down the greatest value of $\frac{1}{4sin\theta - 3cos\theta + 6}$ (iii)

[2]

B7(a). In a triangle, $\triangle ABC$, prove that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ [8]

- **(b).** Prove the identity. $(1 + sin\theta)(\frac{1}{cos\theta} tan\theta) \equiv cos\theta$. [6]
- (c). Find the coordinates of the points of intersection of the line y + 2x = 9 and the curve $y^2 = 6x + 1$. [4]
- (d). The line L_1 has the equation 2x + y = 8. The line L_2 passes through the point A(7, 4) and is perpendicular to L_1 .
 - (i) Find the equation of L_2 . [6]
 - (ii) Given that the lines L_1 and L_2 intersect at the point B, find the length of AB. [6]

END OF THE PAPER